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This feasibility study investigated how data acquired 

through the latest advances in digital technologies 

such as the 4th Industrial Revolution (I4.0) and the 

Internet of Things (IoT), can provide digital 

intelligence to shape decisions about the 

manufacture and utilisation of automotive 

components for accelerating the implementation of 

more circular approaches in UK manufacturing. The 

novelty of this research lies in investigating the 

application of digital intelligence through the lens of 

a restorative circular economic model focusing on 

product life extension and its suitability at a 

particular point in a product’s life cycle. 

 

Through this research, a remanufacturing process 

was mapped and simulated using Discrete Event 

Simulation (DES), to depict the decision-making 

process at the shop-floor level of a hypothetical 

remanufacturing facility. To understand the 

challenge of using data in remanufacturing, a series 

of interviews were conducted.  These identified 

significant variability in the condition of the returned 

product. To address this gap, the concept of 

Certainty of Product Quality (CPQ) was developed 

and tested through a System Dynamic (SD) model 

to better understand the effects of CPQ on products 

awaiting remanufacture, including inspection, 

cleaning and disassembly times. 

 

The wider application of CPQ could be used to 

forecast remanufacturing and production processes, 

resulting in reduced costs by using an automatized 

process for inspection, thus allowing more detailed 

distinction between ‘go’ or ‘no go’ for remanufacture. 
To scale its impact, CPQ would need to be product-

specific and, in the long term, it should be 

considered when designing a product or component. 

In the future, considering new technologies such as 

blockchain would be imperative to secure how data 

is gathered and analysed, as well as allowing 

interconnectivity between the product to be 

remanufactured and the wider operation system.  

Within the context of a Circular Economy, CPQ 

could be replicated to assess interventions in the 

product lifecycle, and therefore the identification of 

the optimal CE strategy and the time of intervention 

for the current life of a product i.e. when to upgrade, 

refurbish, remanufacture or recycle. As 

demonstrated, data streams would be imperative to 

understand the factors of influence that affect the 

product integrity, condition and reliability of a 

product, and as such developing mechanisms to 

capture and analyse this data could help to uncover  

exciting opportunities for creating and quantifying 

new forms of value within manufacturing. 

 

 

  

Executive Summary 
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1. Research Challenge 

 
The Circular Economy offers an alternative model to 

the traditional linear economy (take, make, use and 

dispose), decoupling economic value creation from 

resource consumption by keeping resources in use 

for as long as possible, extracting the maximum 

value from them whilst in use and then recovering 

and regenerating products at the end of each 

service life.1 Three Circular Economy strategies for 

enhancing asset and resource productivity within a 

manufacturing environment have been identified: i) 

increasing the utilisation of an asset or resource 

(product as a service, sharing platforms, greater 

resource productivity), ii) extending the life of an 

asset (durable design, predictive maintenance, 

reuse, remanufacture), and iii) cascading an asset 

through additional use cycles (component 

harvesting, recycling).2 However, the implementation 

of Circular Economy strategies in manufacturing 

environments is subject to several risks including the 

mismatch between fluctuating demand, supply and 

value of used components, causing uncertainty 

regarding costs and return on investment3; as well 

as the lack of information concerning the condition, 

availability and location of in-service assets.4 

However, the emergence and increasing uptake of 

technologies based on the principles of Industry 4.0 

present a way to overcome some of these barriers to 

fully implement Circular Economy principles in the 

manufacturing sector.3  

 

This research has investigated the feasibility of the 

application of digital intelligence through the lens of 

a restorative circular economic model focusing on 

product life extension, specifically remanufacturing 

strategies with the aim of assessing the provision of 

information about the maintenance, enhanced repair 

and reconditioning, use and reuse of automotive 

components. The focus is on the automotive sector, 

as this sector reveals that the sustainability benefits 

of digitisation could be substantial, arising from 20-

30% machine downtime reduction, 12-20% inventory 

reduction, 30-50% cost of quality reduction and up to 

80% improvement in forecasting accuracy.5 In 

addition, this sector has succeeded in using data-

driven intelligence to enable sustainable practices. 

However, these have focused on only one Circular 

Economy strategy (e.g. predictive maintenance) and 

such risks have prevented successful 

implementation on other aspects of remanufacture 

such as the assessment of the stochastic nature of 

returned products.6 

2. Context 
 

This feasibility study refers to Circular 4.0 as “data-

driven circular approaches” enabled by Industry 4.0. 
Data-driven intelligence is rapidly becoming a 

pervasive feature of our economy, where data 

generated through social, mobile, machine and 

product networks are being leveraged through data 

analytics to create new forms of value. In 

manufacturing industries, through emerging 

concepts such as Industry 4.0 and Iota, data-driven 

intelligence is transforming how products are 

manufactured, sold and used across the value 

chain.2 Despite a wealth of research into 

technological advances in manufacturing, much of it 

has focused on productivity, flexibility and 

responsiveness.7 Pairing the digital revolution with 

the principles of a Circular Economy model has the 

potential to radically transform the industrial 

landscape and its relationship to materials and finite 

resources, thus unlocking additional value for the 

manufacturing sector.8 

 

Data-driven approaches for a Circular Economy in 

manufacturing is strongly related to the concept of 

Industry 4.0, also known as smart manufacturing or 

the 4th industrial revolution.3,9 Industry 4.0 is based 

on a manufacturing system driven by information 

technologies such as cyber-physical systems, cloud 

manufacturing, IoT, additive manufacturing and big 

data.10 It involves a combination of smart factories 

and product enabled communication through the 

aforementioned technologies.9 Industry 4.0 allows 

decision making through real-time information on 

production, machines and flow components as well 

as constant monitoring of performance and the 

tracking parts and products.11 Industry 4.0 

technologies have the potential to unlock a Circular 

Economy through the tracking of products in use by 

embedded sensors embedded in order to monitor 

maintenance requirements3; monitor products in use 

to extend their lifetime by recovery of components 

for reuse or remanufacture or to inform end of life 

strategies such as disassembly and recycling12. A 

‘product passport’ would be required that could 
display information about materials contained in the 

product to facilitate reverse logistics and therefore 

Circular Economy strategies.8 In addition, 

information technologies could be used to monitor 

and control operational performance to assess real-

time efficiency to predict maintenance or 

refurbishment of components/product13; provide 

services alongside the physical product, for 

example, to customise products using 3D printing14, 
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or remove the provision of physical products, by 

replacing them with virtual ones.3 

 

As seen, there has been growing interest in 

exploring the relationship between a Circular 

Economy and Industry 4.0.3,12,15 However, a deeper 

knowledge and understanding is required on how 

data acquired from digital technologies can really 

unlock the potential of a Circular Economy. Table 1 

identifies the data flows between the product, the 

user (including the customer, client and operator) 

and the conjunction of activities that occur between 

the designer, the manufacturer and the supply chain, 

referred to as ‘Big M’ in manufacturing16; mapped 

against circular strategies to identify new models of 

material use and value creation.  

 
This study focused on investigating the value of 

capturing and analysing data streams to inform 

decision making processes in remanufacturing of 

automotive components as a starting point (darkest 

shaded) and will explore crossover with other 

product life extension strategies (light shaded) and 

sectors. 

 

In context, remanufacturing is the process of 

disassembly and recovery of an asset at a product 

and component level8, and it is considered as one of 

the product life extension strategies of a Circular 

Economy to keep a product or component at its 

highest utility and value17. Remanufacturing is 

already common in the automotive sector as it has 

one of the largest economic impacts18, and will 

become even more imperative as we move from 

fossil fuel-powered cars to hybrid and electric 

vehicles. Therefore, it is vital and timely to invest in 

post-manufacturing strategies such as 

remanufacturing of critical parts of these vehicles.  
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3. Approach 
 
The key partners of this study included PSS – an 

independent remanufacturing company of 

automotive components, RiverSimple – a hydrogen 

fuel cell car manufacturer, The High 

Speed Sustainable Manufacturing Institute 

(HSSMI) and the European Centre 

for Remanufacture – consultancies with expertise 

in remanufacturing. These organisations were 

involved throughout the research to enable a more 

informed understanding of remanufacturing 

and to investigate data acquisition and interaction in 

the remanufacturing process between the product, 

the use and the Big M (Figure 1). 

 

 
Figure 1: Data flows enabling circular strategies 

 
 
Through a state of the art literature review 

 in remanufacture and a series of interviews with 

companies involved in remanufacture (five in total 

with two OEM companies, two independent 

remanufacturers and a consultancy - see: 

Okechukwu et al.19) a remanufacturing process 

was mapped (see Figure 2 below), and simulated 

using Discrete Event Simulation (DES), to depict the 

decision-making process at the shop-floor level of a 

hypothetical remanufacturing facility.  It is important 

to mention that remanufacturing is either performed 

by the Original Equipment Manufacturer (OEM) or a 

third-party independent remanufacturer. The 

difference being that the OEM can leverage upon 

product knowledge and brand name, whilst the 

independent remanufacturer has better accessibility 

to cores with extensive expertise in remanufacturing  

 

 

and has dedicated facilities for this 18. The DES 

Model was developed in AnyLogic, for an 

independent remanufacturer processing an electric 

motor, and focussed on the remanufacture of two 

major components: a rotor (an electrical component) 

and a shaft (a mechanical component).  

 

Through the interviews conducted, a taxonomy of 

manufacturing data was defined in three categories: 

structured data (spreadsheets, relational databases, 

enterprise data warehouse, files sorted in  

manufacturing PCS), semi-structured data (data 

from sensors, relays, RFID, XML, time series data 

structures) and unstructured data (operator shift 

reports, machine logs, error logs, texts, images, 

audio/video, manufacturing 

collaboration on social platforms) 

(see: Okechukwu et al.19). These 

findings helped to understand 

the challenge of using data 

in remanufacturing, especially as 

data comes in different formats, 

which can influence the 

assessment of the returned 

product, without knowing for sure 

the significant variability in the 

condition of the returned 

product.20 To address this 

gap, the concept of Certainty of 

Product Quality (CPQ) was 

developed. Furthermore, a 

System Dynamic (SD) model 

developed in AnyLogic for the remanufacturing 

process of a fuel cell at RiverSimple was used to 

better understand the effects of CPQ on the 

product awaiting to be remanufactured, including 

inspection, cleaning and disassembly times.  

 

The CPQ concept delivers a novel feature to 

the remanufacturing process as it is a value between 

0.1 and 1 that quantifies how certain you could be 

about the quality of a returned product. CPQ 

brings a new way of quantifying forms of value 

within remanufacturing based on the amount of data 

that is available to provide information about the 

returned product. Some important facts of CPQ are:  

 

 CPQ is a function of Physical Condition (PC), 

Part Remanufacturing History (PRM), Part 

Replacement History (PRH), and Data from 

sensors (DS).  
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 If you were certain/confident about the quality 

of the returned product, the number would be 

around 0.8-1.0. If you were uncertain, the 

number would be between 0.1-0.5.  

 

 CPQ would affect the Disassembly 

time, Cleaning time, Inspection time of the 

product.   

 

 CPQ has an impact on the time spent in 

a remanufacturing process and associated 

costs.  

 

 80% of products are 

going through an inspection process to be 

remanufactured into reusable 

products; the remaining 20% are expected to 

be disposed of.   

 

 The nature of the product determines the CPQ 

and the level of disassembly a component might 

go to. Data from sensors could help to determine 

the uncertainty and CPQ. 

  

In the final stage of research, the main partners of 

this study were interviewed to validate the CPQ 

concept and its effects on the decision making of 

the remanufacturing processes as well as its 

challenges and benefits.   

 

 

Figure 2: Discrete Event Simulation (DES) Model 
of two components of an electric motor 

4. Implementations 
 
Discrete Event Simulation Model:  

 

A DES Model showing the sequence 

of remanufacturing processes of a rotor and a 

shaft were depicted as shown in Figure 2.  

 

These are: Inspection & Sorting, Disassembly, 

Cleaning, Inspection & Grading, Fault Diagnosis & 

Prognosis, Reconditioning, Reassembly, Testing 

and Final Assembly. The top half and the bottom 

half illustrate the remanufacturing processes for the 

rotor and shaft respectively. Some key features of 

the model are described overleaf:  
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 Collection (returned products): The 

remanufacturing process starts 

with the collection of returned products. The 

attrition rate for electrical products, as suggested 

in the literature, was kept at 3%.21   

 

 Inspection and sorting: After collection, the 

products are inspected based on their physical 

condition (PC) and the product identification 

number (ID). Approximately 10% of the products 

are rejected and sent for disposal at this stage.  

The electric motor is then disassembled and 

sorted into electrical components (rotor) and 

mechanical components (shaft).   

 

 Disassembly: Actual disassembly of a return is 

not necessarily an exact reversal of its assembly 

sequence due to various factors: degradation of 

components, damage to components during use, 

missing components, product upgrade during 

maintenance and remanufacturing tasks.22 Some 

components of an electric motor e.g. rotor can be 

reused directly without the need for full 

disassembly whereas other components e.g. 

shaft require proper reconditioning and 

disassembly so that they can be reused in 

a remanufactured product.23  

 

   Time spent in disassembly, cleaning and 

inspection: CPQ of the returned product would 

affect the disassembly time, cleaning time and 

inspection time in the remanufacturing process. 

For example, if the CPQ for the product is very 

high, then in most cases you can directly 

inspect/disassemble/replace the faulty part and 

may not need to go down to the lowest level 

of disassembly. The time spent in the above-

mentioned remanufacturing processes is directly 

proportional to the associated labour costs and 

the costs associated with the 

repair/replacement of parts. Hence, CPQ of a 

product could be useful for predicting the 

remanufacturing time and costs.  

 

 Inspection and grading: Inspection is required 

to measure and detect the current condition of a 

component. Generally, the components are 

graded into three categories:24 (a) directly 

reusable, (b) reusable after proper repair or 

reconditioning, and (c) cannot be repaired or 

reconditioned.  

 

 Fault Diagnosis and 

prognosis: Diagnosis detects the failure that has 

occurred in a component, and isolate and identify 

the root of the failure, based on the data 

collected by the embedded sensors. Prognosis  

estimates the time at which a component will fail 

to operate at its stated specifications based on its 
current condition as well as the future  

load and environmental exposure i.e., the 

prediction of the remaining useful life (RUL) of 

the component.  

 

 Reconditioning and Repair: The reconditioning 

strategies are dependent on the current condition 

and the failure mode of the used parts. A 

damaged or worn part can be repaired either by 

removing the damaged area or by adding new 

material to the area, depending on the severity of 

the damage.25 The PRM, as well as the 

performance and reliability of the previous 

remanufactured versions of a component, will 

provide insight into the effectiveness of the 

reconditioning methods.   

 

 Reassembly and Testing: Generally, the 

reassembly sequence is the same as the original 

new product but may differ if there has been a 

significant upgrade during remanufacturing. 
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System Dynamics Model:  

 

A SD model was used to understand 

the remanufacturing operation and decision-making 

process at a systems level as shown in  

Figure 3. Some key features of the model were 

obtained from direct conversations 

with RiverSimple and are described below:   

 
Figure 3: System Dynamic Model of a fuel cell 
for RiverSimple 

   

 

 Collection (returned products): The 

remanufacturing process starts with the 

collection of returned products. The attrition rate 

for fuel cells, as suggested in the literature, was 

kept at 3%.21  

 

 Reusable products: 80% of products going 

 through the inspection process are expected to 

be remanufactured into reusable products, the 

remaining 20% will be disposed of.   

 

 Inspection Time: CPQ of the returned product 

would affect the inspection time in 

the remanufacturing process.  

 

 Controlled disposal: 20% products are going 

through the inspection process for controlled 

disposal. They will be disposed of with respect 

to disposal time and rate. Some products (valid 

in the case of batteries etc) that exceed the 

keeping time will also be sent for disposal. The  

 

 

 

 

 

 

 

 

 

 

           

 

number that exceeds the keeping time is 1%.  

 

 Demand: This element controls the  

remanufacturing rate and redistribution rate.  

 

 Awaiting remanufacturing: Products that 

have passed the inspection and are awaiting 

remanufacture.  

 

 Redistributed products: Are given a 

product lifetime of 5 years. After 5 years, they 

will automatically join the collected products 

(returned products).  

 

 New products:  Are given a production rate 

and cycle lifetime of 5 years and after that they 

will automatically join the collected products.  
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5. Summary of Results: The value 
of data 

 
The DES Model helped to understand that the data 

obtained from embedded sensors in the product is 

critical in determining the CPQ of that product. 

Figure 2 demonstrates the effect of CPQ on the time 

spent in disassembly, cleaning and inspection. For 

example, during remanufacturing of 100 products 

with high CPQ (ranging between 0.8-1), 75% of the 

products spent 31-35 hrs in disassembly, cleaning 

and inspection, with a mean of 31 hrs. However, 

during remanufacturing of 100 products with low 

CPQ (ranging between 0.1-0.3), 75% of the products 

spent 46-52 hrs in disassembly, cleaning and 

inspection, with a mean of 47 hrs, as shown in  

 

 

 

 

 

Figure 4 and 5 respectively. Figure 4 depicts 

the Probability Distribution Function (PDF) of time 

spent in disassembly, cleaning and inspection. 

Vertical bars correspond to time spent in the system 

with heights proportional to the density of 

products. Solid lines represent the mean time spent 

in the system. Figure 5 depicts the variations in the 

time spent in disassembly, cleaning and inspection.   
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Figure 4: Probability distribution function of time spent in disassembly, cleaning and 

inspection  

Figure 5: Time spent in disassembly, cleaning and inspection for a high and low 

CPQ in a small number of products 
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Figure 7: Effect of CPQ on resuable products 
 

Figure 6: Maximum utilisation of pallet racks in each section 
of a remanufacturing facility 

 

Figure 8: Time spent for remanufacture depending on the CPQ value 
 



 

11 
 

The DES model showed that storage/work 

space has been allocated for each station in the 

form of pallet racks. Figure 6 depicts a bar graph 

showing the maximum utilisation of pallet racks in 

each section of the remanufacturing plant. This 

feature is useful to determine the optimum resources 

required to meet the product demand, such as the 

number of workstations being used.   

 

The SD Model demonstrates the effect of CPQ on 

the products awaiting remanufacture in the system. 

For example, if a batch of CPQ 0.1 is received for 

remanufacturing, then after 10 days only 1 product 

would complete the disassembly and inspection 

stage and would reach the 

‘awaiting remanufacture’ stage. Whereas, if a batch 

of CPQ 1 is received for remanufacturing, the 

number of products at ‘awaiting 
remanufacture’ stage would be three times 

higher, as depicted in Figure 7. 

 

In addition, Figure 8 demonstrates the effect of CPQ 

on the reusable products. For example, if a batch of 

CPQ 0.1 or 0.2 arrives then after 3 days there would 

not be any product in remanufacturing. 

 

6. Wider Applications  
 
The feasibility study has demonstrated 

that capturing CPQ rates could be used to predict 

not just the time but also the number of products that 

could be remanufactured enabling a forecast that 

can be used to plan remanufacture and production  

processes. In addition, adding a degree of 

automation in inspection would be key for 

the aforementioned forecasting. However there is a 

need for a system that can process and analyse 

historical data based on the PRM and PRH. 

Experienced inspectors would be key to gather as 

much information as possible to develop and 

calibrate this system. The challenge is to find a 

mechanism to do so, that could also help to 

standardise the data for each product. If this  

challenge is overcome, data sets can then be used 

to differentiate one product from another to make 

the remanufacturing process as efficient as 

possible. Another challenge would be to replace 

manual with automated inspections for components 

that pass a quality threshold. This could be 

overcome by assessing the CPQ when 

disassembling a part, as this information could 

be captured by the CPQ to increase its certainty. 

Therefore, there will be a point where the product 

does not need to be further inspected, and the 

decision would be automated based on the CPQ 

value.   

 

CPQ has the benefit of reducing costs by using an 

automated process for inspection as it allows a more 

detailed distinction between ‘go’ or ‘no go’ for  

remanufacture. To scale its impact, CPQ would 

need to be product specific and in the 

long term it should be considered when designing 

a product or component. In the future, 

considering new technologies such as blockchain 

would be imperative to secure how data is gathered 

and analysed, as well as allowing interconnectivity 

between the product to be remanufactured and the 

wider operation system.  

Within the wider context of a Circular Economy, 

CPQ could be replicated to assess interventions in 

the product lifecycle, and therefore the identification 

of the optimal Circular Economy strategy and the 

time of intervention for the current life of a product. 

As demonstrated, data streams would be imperative 

to understand the factors of influence that affect the 

product integrity, condition and reliability, and as 

such developing mechanisms to capture and 

analyse this data could help to uncover exciting 

opportunities for creating and quantifying new forms 

of value within manufacturing.  

 

7. Conclusions and future plans  

 
Through investigating remanufacture within the 

automotive industry, the feasibility study identified 

that i) the analysis of in-service data from 

automotive components can influence decisions 

surrounding remanufacture and can lead to 

significant cost, material and resource savings by 

reducing the uncertainty in the condition of 

components returned for remanufacture, ii) there is a 

need for fundamental research into how interactions 

between products, users and manufacturers can 

inform opportunities for circular approaches, and iii) 

to enable a transformational change in resource use 

across the manufacturing sector a wider spectrum of 

Circular Economy strategies needs to be 

investigated across multiple industrial sectors.  

 

This research has taken the first step in investigating 

the relationship between emerging technologies that 

contribute to Industry 4.0, the Internet of Things and 

the Circular Economy. The development of the CPQ 

concept has provided evidence that data on Physical 

Condition, Part Remanufacturing History, Part 
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Replacement History and Data from sensors can 

support a more efficient and intelligent 

remanufacturing process resulting in substantial 

cost, material and resource savings. Furthermore, 

this study has evidenced the significant potential to 

upscale this research through the use of social, 

mobile, machine and product network data, 

leveraged through data analytics to create new 

forms of value to transform the industrial system 

within the context of a digitally enabled circular 

economy.  

  

The team has secured subsequent funding from the 

Engineering and Physical Sciences Research 

Council (EPSRC - grant number: EP/R032041/1) for 

a 3-year project to address some of the 

challenges presented in this feasibility study 

and extend its scope to identify how data from 

products in the automotive and aerospace sectors 

can further inform decisions surrounding the 

implementation of Circular 

Economy strategies within manufacturing.  

  

This future work will see a characterisation of in-

service data streams based on an information-

theoretic approach for selecting optimal 

Circular Economy strategies and timing of 

intervention. 

  

To achieve this, qualitative research will identify the 

different types of value generated from 

Circular Economy strategies and the factors and 

costs that influence their implementation. 

Findings from this qualitative research will inform the 

data streams to be mathematically characterised, to 

further calculate the types of value and 

cost. Research findings will be iteratively applied, 

tested and evaluated through three crosscutting use 

cases in partnership with Airbus, Rolls Royce 

and RiverSimple. This work would not have been 

possible without the findings emanating from this 

feasibility study.  
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