“Modeling, Simulation and Optimization of Functional Materials and Advanced Manufacturing”

within the 15th World Congress on Computational Mechanics & 8th Asian Pacific Congress on Computational Mechanics (WCCM-APCOM 2022), that will take place in Yokohama, Japan, July 31 to August 5, 2022.

This mini-symposium is intended to cover the latest advances in simulation-based design for the 3D printing of functional materials. We aim to bring together specialists from different disciplines to exchange ideas on functional material modelling, process physics and simulation, computational techniques for modeling, design and optimization, experimental characterization and validation, and applications (https://www.wccm2022.org/minisymposia1003.html).

You can find a more detailed abstract of the mini-symposium below at the end of this email.

The deadline for presenting a one-page abstract is November 15, 2021. During abstract submission, please select our mini-symposium 1003 under track 1000 “Manufacturing and Materials Processing”.

You can find further details and the abstract submission system on the conference webpage: https://www.wccm2022.org/


We thank you in advance for your participation interest.

If you have any question, please feel free to contact us.


Looking forward to hearing from you!


Best regards, 

The mini-symposium organizers,     

Mahdi Bodaghi, Frederic Demoly, Giulia Scalet, Oliver Weeger, and Ali Zolfagharian

—————————————————————————————————-

Modeling, Simulation and Optimization of Functional Materials and Advanced Manufacturing

Functional materials represent a class of advanced materials and composites whose physical properties (e.g., shape, stiffness, color) can be controlled by external stimuli (e.g., temperature, pH, light, electric or magnetic field). They are found in several classes of materials, such as ceramics, metals, polymers, and include, for instance, shape memory alloys, phase transforming materials, or stimuli-responsive polymers and hydrogels. Thanks to their unique properties, functional materials find application in numerous fields, from automotive and electronics to medicine and pharmacology. 

In recent years, additive manufacturing, also known as 3D printing, has emerged as a frontier in the advancement of scientific research on 3D printing and functional materials.

Various backgrounds, ranging from manufacturing technology to material science, and from mathematical modelling to experimental testing, are currently contributing to the expansion of this field of research.

To bring this technology closer to application, computational modeling, simulation, and design optimization are of particular importance. However, this represents a fundamental, but challenging and currently under-developed topic due to the tight connection between process, material functionalities, and the final design. In particular, simulation and design of 3D printed structures made of functional materials often requires mechanical modelling of large deformations, nonlinear and viscous constitutive behavior, transient deformation, multi-physical (such as thermo-, hydro-, or photo-mechanics) and process-dependent multiscale material behavior of inhomogeneous material distributions.

This Minisymposium is intended to cover the latest advances in simulation-based design for the 3D printing of functional materials. We aim to bring together specialists from different disciplines to exchange ideas on functional material modelling, process physics and simulation, computational techniques for modeling, design and optimization, experimental characterization and validation, and applications.

Areas of interest within this Minisymposium will include, but will be not limited to:

  • Constitutive modeling of functional materials at different scales
  • Computational simulation and discretization methods, including process modeling
  • Topology and design optimization for functional structures
  • Additive manufacturing and 3D printing technologies for functional materials
  • Experimental characterization and validation methods
  • Computer-aided design for applications

Key words: Additive manufacturing, functional materials, smart materials, stimuli-responsive materials, active materials, 4D printing, constitutive modeling, topology optimization, design optimization

REFERENCES

[1] M.J. Geiss, N. Boddeti, O. Weeger, K. Maute, and M.L. Dunn, “Combined Level-Set XFEM-Density Topology Optimization of 4D Printed Structures undergoing Large Deformation”, J. Mech. Des., Vol. 141(5), pp. 051405 (2019).

[2] C.M. Hamel, D.J. Roach, K.N. Long, F. Demoly, M.L. Dunn, and H.J. Qi, “Machine-learning based design of active composites for 4D printing”, Smart Mater. Struct., Vol. 28, pp. 065005, 2019.

[3] G. Sossou, F. Demoly, H. Belkebir, H.J. Qi, G. Montavon, and S. Gomes, “Design for 4D printing: A voxel-based modeling and simulation of smart materials”, Mater. & Des, 175, 107798 (2019).

[4] S. Pandini, N. Inverardi, G. Scalet, D. Battini, F. Bignotti, S. Marconi, and F. Auricchio, “Shape memory response and hierarchical motion capabilities of 4D printed auxetic structures”, Mech. Res. Comm., Vol. 103, p. 103463 (2020).

[5] A. Zolfagharian, M.P. Mahmud, S. Gharaie, M. Bodaghi, A.Z. Kouzani, and A. Kaynak, “3D/4D-printed bending-type soft pneumatic actuators: fabrication, modelling, and control”, Virt. Phys. Protot., Vol. 15(4), pp.373-402 (2020).

[6] A. Zolfagharian, M. Denk, A.Z. Kouzani, M. Bodaghi, S. Nahavandi, and A. Kaynak, “Effects of Topology Optimization in Multimaterial 3D Bioprinting of Soft Actuators”, Int. J. Bioprinting, Vol. 6(2), p. 260 (2020).

[7] M. Bodaghi, A. Serjouei, A. Zolfagharian, M. Fotouhi, H. Rahman, and D. Durand, “Reversible energy absorbing meta-sandwiches by FDM 4D printing”, Int. J. Mech. Sci., Vol. 173, p. 105451 (2020). 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s